STUDIES ON ANTIBIOTIC SF-733, A NEW ANTIBIOTIC. I TAXONOMY, ISOLATION AND CHARACTERIZATION

TAKASHI SHOMURA, NORIO EZAKI, TAKASHI TSURUOKA, TOMIZO NIWA, EIICHI AKITA and TARO NIIDA

Research Laboratories, Meiji Seika Kaisha, Ltd., Kohoku-ku, Yokohama, Japan

(Received for publication January 23, 1970)

A new antibiotic SF-733 inhibiting both Gram-negative and Gram-positive bacteria was isolated from *Streptomyces ribosidificus* nov. sp., strain SF-733. Antibiotic SF-733 obtained as colorless needles has a molecular formula $C_{17}H_{34}N_4O_{10}$, and is concluded to be a new aminoglycosidic, water-soluble and basic antibiotic based on its physical and chemical properties.

In the course of a screening program for antibiotics active against Gram-negative bacteria, we found a new antibiotic, antibiotic SF-733, from the culture filtrate of a newly isolated streptomycete, strain SF-733 for which we propose the name *Streptomyces ribosidificus* nov. sp.

Antibiotic SF-733 is a new amino-sugar antibiotic with low toxicity, and exhibits antibacterial activity against both Gram-negative and Gram-positive bacteria. Taxonomic studies on antibiotic SF-733-producing organism, and isolation and characterization of antibiotic SF-733 are reported in this paper.

Taxonomic Studies

Strain SF-733, that produces antibiotic SF-733, was isolated from a soil collected at Tsu City of Mie Prefecture in Japan. It shows the following properties:

1. Morphological Properties

The vegetative mycelium develops well on most of the media used. On some media such

Fig. 1. Aerial mycelium of *Streptomyces* ribosidificus, strain SF-733.

Fig. 2. Electron micrograph of spores of *Streptomyces ribosidificus*, strain SF-733.

Medium	Growth	Aerial mycelium	Soluble pigment
Sucrose Czapek's agar (28°C)	Good, thick, wrinkled, penetrating into medium, yellowish cream, reverse color; light brown	Very scant, light yellowish white	None
Glycerine Сzарек's agar (28°С)	Good, thick, wrinkled, penetrating into medium, light yellowish brown	Scant, white~cream	None
Glucose asparagine agar (KRAINSKY) (28°C)	Good, penetrating into medium, dark cream, reverse; brownish yellow	Scant, cream~light yellowish white	None
Glucose asparagine agar (USHINSKY) (28°C)	Good, penetrating into medium, brownish yellow with greenish tinge	Abundant, powdery, greenish yellow, later gray~grayish brown with greenish yellow patches	Faint yellow
Ca-malate agar (28°C)	Poor, light yellowish cream	Scant, white	None
Glycerine Ca-malate agar (28°C)	Poor, yellow	None, or scant, light yellow	None
Starch synthetic agar (28℃)	Good, penetrating into medium, yellow, at center of colony; greenish brown	Abundant, powdery, greenish yellow, later grayish brown	Faint yellow
Starch yeast extract agar (28°C)	Good, yellowish brown	Abundant, gray~brownish gray	None
Bouillon agar (28°C)	Penetrating into medium dark cream, reverse; brownish yellow	None, or scant light yellow	None
Glucose bouillon agar (28°C)	Wrinkled finely, yellowish brown	Scant, cream	None
Potato plug (28°C)	Elevated, wrinkled finely, light brownish cream	Scant, whitish gray	None
Carrot plug (28°C)	Dark cream	None	None
Tyrosine agar (28°C)	Dark cream	Gray	None
Egg (37°C)	Light brownish yellow	None	None
Löffler's coagulated serum (37°C)	Dark brownish yellow	None	None
Bacto nitrate broth (28°C)	Bottom growth, colorless	None	None
Skimmed milk (37°C)	Ring and bottom growth, yellowish orange	None	Light brown \sim orange
Gelatin (20°C)	Colorless~cream	None	None
Cellulose medium (28°C)	No growth		

Table 1. Cultural properties of Streptomyces ribosidificus strain SF-733.

as starch synthetic agar and starch-yeast extract agar, it forms abundant aerial mycelia which develop into many open spirals (Fig. 1).

The spores are oval to ellipsoidal and $0.8 \sim 1.1 \,\mu \times 1.1 \sim 1.4 \,\mu$ in size. With electron microscope examination, surfaces of the spores (Fig. 2) are spine-like.

2. Cultural Properties

Cultural properties on different media are listed in Table 1.

3. Physiological Properties

Physiological properties, including utilization of carbon sources are summarized

1100310111003, 3110.		6D)		
Production of H ₂ S negative		SF-733*		
Tyrosinase reaction	negative	Positive	arabinose, rhamnose, glucose,	
Reduction of nitrate	positive	utilization	mannose, galactose, saccharose,	
Coagulation of skimmed milk	nagative (28°C, 37°C)		starch, glycerol, sorbitol, mannitol, maltose	
Peptonization of skimmed milk	positive (37°C) negative (28°C)	Doubtful utilization	inositol, Na-citrate	
Hydrolysis of starch	positive	Negative	xylose fructose dulcitol, salicin.	
Liquefaction of gelatin	negative	utilization	cellulose, Na-acetate,	
Liquefaction of LöffLer's	positive (weak)		Na-succinate	
coagulated serum		* Carbon utili	zation was investigated using the	
		method of PRIDHAM and GOTTLIEB ²⁾ .		

Table 2. Physiological properties of *Streptomyces* ribosidificus, strain SF-733.

in Tables 2 and 3.

4. Growth Temperatures

Growth of strain SF-733 is observed at $17 \sim 45^{\circ}$ C. The optimal temperature is between 35°C and 40°C when the organism is grown on starch-yeast extract agar medium.

5. Comparison of Strain SF-733 with Related Streptomyces

Strain SF-733 is non-chromogenic and, when cultured on synthetic media, aerial mycelium colored gray to grayish brown develops on the surface of yellowish vegetative growth. These properties of strain SF-733 allow its placement in WAKSMAN's "flavus" series of Streptomyces¹⁾. With respect to the properties mentioned above, strain SF-733 most closely resembles Streptomyces flavus (KRAINSKY, 1914) WAKSMAN and HENRICI, 1948, Streptomyces flaveolus (WAKSMAN, 1923) WAKSMAN and HENRICI, 1948 and Streptomyces flavovirens (WAKSMAN, 1919) WAKSMAN and HENRICI 1948.

These three species, however, principally differ from strain SF-733 as follows :

(1) Streptomyces flavus usually forms straight chains of spores (rarely open coils), does not reduce nitrate and grows optimally at 25°C. Strain SF-733 forms many open coils, reduces nitrate and grows optimally within a higher temperature ranges $(35 \sim 40^{\circ}C)$.

(2) Streptomyces flaveolus forms hairy spores, whereas strain SF-733 forms spine-like spores.

(3) Streptomyces flavovirens usually forms straight chains of spores (rarely open coils) and produces greenish-yellow diffusible pigment when grown on chemically-defined media. Strain SF-733 forms many open coils and produces only a faint yellow or generally no diffusible pigment when grown on chemically-defined media.

In view of the above, strain SF-733 was believed to be a new species and was named *Streptomyces ribosidificus*^{*} nov. sp. SHOMURA and NIIDA.

Antibiotic Production

Antibiotic SF-733 was produced in a medium composed of starch 2.0 %, soy bean meal 2.5 %, wheat embryo 1.0 % and sodium chloride 0.25 %, pH 7.0 before sterilization. The optimal temperature for 30-liter jar fermentor cultivation of *S. ribosidificus*,

Table	3.	Carbon	source	utiliza	tion of
	Str	eptomyce	s ribosi	dificus,	strain
	SF-	733*			

^{*} Strain SF-733 was first named Streptomyces thermoflavus nov. sp., and deposited in the American Type Culture Collection for the application for a patent and accessioned as ATCC 21294 on July 16, 1968. But a referee kindly let us know that Actinomyces thermoflavus had been listed in USSR in 1963 (Mikrobiologiya 32(4): 623~631, 1963). Therefore, according to the referee's opinion, we changed its name to Streptomyces ribosidificus nov. sp. in this paper to avoid duplication.

strain SF-733 was $30\sim37^{\circ}$ C, but the maximum titer of the antibiotic was reached at lower temperature ($25\sim30^{\circ}$ C).

Isolation and Purification

The isolation procedure for antibiotic SF-733 was comparable to that used for other similar, water-soluble, basic antibiotics as outlined in Fig. 3.

Antibiotic SF-733 in the broth filtrate was concentrated by adsorption on Amberlite IRC-50 (NH₄⁺ type), followed by elution with dilute ammonium hydroxide. The active eluate was concentrated under reduced pressure, and adsorbed on Amberlite CG-50 (NH₄⁺ type). Elution with dilute ammonium hydroxide and concentration of the active fractions gave a crude powder of antibiotic SF-733. The crude powder was chromatographed on a colum of Dowex 1X2 (OH⁻ type) using development with

water. Active fractions detected by assay with *Bacillus subtilis* were collected, concentrated under reduced pressure and finally freeze-dried. The white powder thus obtained was dissolved in methanol. Upon standing overnight, antibiotic SF-733 crystallized out as a methanol solvate, which readily lost methanol on drying at

> Fig. 3. Isolation and purification of antibiotic SF-733. Broth

```
filtration
```

Mycelium	Filt	rate
		adjusted to pH 7
Am	berlite I	$RC-50(NH_4^+)$ column
		eluted with 0.5 N NH ₄ OH
	Elua	te
		concentrated
		adjusted to pH 7
Am	berlite ($G-50(NH_4^+)$ column
		eluted with 0.2 m $\rm NH_4OH$
	Elua	te
		concentrated
Do	wex 1X	2 (OH ⁻) column
		eluted with water
	Elua	te
		freeze-dried
	White	powder
		crystalization from methanol
	Crys	stals
		recrystalization from methanol
Pure cry	vstals of	Antibiotic SF-733

Table 4. Physical and chemical properties of free base of antibiotic SF-733.				
Appearance	Colorless needle			
Melting point (dec.)	192∼195°C			
Nature	Basic, pKa' 7.70			
Solubility	Soluble : water Slightly soluble : methanol Insoluble : acetone, <i>n</i> -butanel, ethyl acetate, benzene, hexane, ether, <i>etc.</i>			
Optical activity	$[\alpha]_{D}^{23} + 42^{\circ} (c 1, water)$			
Color reaction	Positive: ninhydrin, Mollsch, anthrone Negative: FEHLING, ferric chloride, maltol, biuret, Tollens, Saka- guchi			
Molecular weight	475 (vapor pressure osmometry) 452 (titration)			
Elemental analysis	$\begin{array}{l} \mbox{Found}: \\ \mbox{C 44.19, H 7.55, N 11.92, O 36.21} \\ \mbox{Calcd. for } C_{17} \mbox{H}_{84} \mbox{N}_{4} \mbox{O}_{10}: \\ \mbox{C 44.92, H 7.54, N 12.33, O 35.20} \end{array}$			
Stability of aqueous solution	Stable : neutral, alkaline Slightly unstable : acidic			

Table 5	5. Comparison	of $[\alpha]_{\rm D}$ values	of
(dextrorotatory,	water-soluble a	ınd
1	basic antibiotics	s in water.	

Antibiotics	$[\alpha]_{\mathrm{D}}$	Antibiotics	$[\alpha]_{\mathrm{D}}$
Antibiotic SF-733	+42	Gentamicin A	+146
Neomycin A	+123	" C ₁	+158
11 B	+58	" C2	+160
<i>"</i> C	+82	Nebramycin 2	+159
Paromomycin I	+64	11 4	+114
" II	+78	" 5	+118
Kanamycin A	+121	" 6	+127
11 B	+135	Destomycin A	+7
" C	+126	" B	+6
Kasugamycin	+120	Hygromycin B	+19.2
Actinospectacin	+7.6	Capreomycin	+2.5

room temperature in vacuo. Recrystallization from methanol gave pure crystals of antibiotic SF-733.

Physical and Chemical Properties

Physical and chemical properties of antibiotic SF-733 are summarized in Table 4. Fig. 4. Infrared absorption spectrum of antibiotic SF-733 (KBr). Fig. 4 shows the infrared

100

80

60

40

20

absorption spectrum using a KBr tablet of de-solvated crystalline SF-733. Fig. 5 shows the ultraviolet absorption spectrum in water. No maxima were observed up The nuclear to 210 mµ. magnetic resonance spectrum of antibiotic SF-733 in deuterium oxide is shown in Fig. 6.

Differentiation of 'Antibiotic SF-733 from Other Related Antibiotics

From the physical and chemical properties described above, it is apparent that antibiotic SF-733 belongs to a group of dextrorotatory, watersoluble and basic antibiotics which

Fig. 6. Nuclear magnetic resonance of antibiotic SF-733.

includes kanamycin, neomycin, paromomycin, etc. Table 5 shows the comparison of $[\alpha]_D$ values of antibiotic SF-733 with those of known antibiotics of this group. Based on $[\alpha]_D$ values, antibiotic SF-733 was differentiated from neomycin A, kanamycins A, B and C, gentamicins A, C1 and C2, kasugamycin, actinospectacin, destomycins A and B, hygromycin B, capreomycin and nebramycins 2, 4, 5 and 6^{3} . Differentiation of antibiotic SF-733 from neomycins B and C and paromomycins I and II was accomplished with paperchromatography using two solvent systems as shown in Fig. 7.

Thus, antibiotic SF-733 differs from all of the known antibiotics studied, and is believed to be a new antibiotic. This was confirmed by

- Fig. 7. Comparison of antibiotic SF-733 with other related antibiotics on paparchromotogram detected by bioautography.
 - Solvent A : n-BuOH-pyridine-AcOH-H₂O (6:4:1:3)(descending, developed for 4 days)
 - Solvent B : 2 % -p-toluensulfonic acid in wet n-BuOH (descending, developed for 25 hours)

structural studies described in Part II of this series4).

Biological Activity

Table 6 summarized the antimicrobial spectrum of antibiotic SF-733. Antibiotic SF-733 is active against a wide variety of Gram-negative and Gram-positive bacteria, but has no activity against yeasts or molds. The activity of antibiotic SF-733 against Gram-negative bacteria is comparable to that of kanamycin A.

The acute toxicity of antibiotic SF-733 was examined by intravenous injection into mice. The LD_{50} value for the sulfate of antibiotic SF-733 was approximately 225 mg/kg (mg=unit).

Test organisms	M.I.C. (mcg/ml)	Medium	Test organisms	M. I. C. (mcg/ml)	Medium
Bacillus subtilis ATCC 6633	0.39	1	Salmonella typhosa	3.125	1
Staphylococcus aureus 209P	3.125	1	Shigella dysenteriae	6.25	1
<i>n n</i> 52–34	3.125	1	Pseudomonas aeruginosa	>100	1
<i>n n</i> 193	3.125	1	Xanthomonas oryzae	0.78	1
" " Smith	0.39	1	Mycobacterium phlei	6.25	2
<i>n n</i> Terajima	0.19	1	" smegmatis 607	12.5	2
Streptococcus faecalis	3.125	1	" " streptomycin-R	12.5	2
Sarcina lutea	100	1	" kanamycin-R	>100	2
Escherichia coli	12.5	1	Candida albicans	>100	3
11 K-12	3.125	1	Torula utilis	>100	3
" chloramphenicol-R	1.56	1	Aspergillus niger	>100	3
Klebsiella pneumoniae	6.25	1	Penicillium chrysogenum	>100	3

Table 6. Antimicrobial spectrum of antibiotic SF-733 by broth dilution method.

Medium : 1=Bouillon, 2=Glycerine bouillon, 3=SABOURAUD's broth

References

- WAKSMAN, S. A.: The Actinomycetes. Vol. 2, Classification, identification and descriptions of genera and species. The Williams & Wilkins Co., 1961
- PRIDHAM, T. G. & D. GOTTLIEB: The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bact. 56: 107~114, 1948
- 3) THOMPSON, R. Q. & E. A. PRESTI: Nebramycin, a new broad-spectrum antibiotic complex. Antimicr. Agents & Chemoth. -1967: 332~340, 1968
- AKITA, E.; T. TSURUOKA, N. EZAKI & T. NIIDA : Studies on antibiotic SF-733, a new antibiotic. II. Chemical structure of antibiotic SF-733. J. Antibiotics, in press